数学 (方程式と不等式)

<番号> 教材名(学習内容)

< 1 >	速算いるは	(因数分解の利用)	pp. 2 - 7
< 2 >	数を分類しよう	(有理数・無理数)	pp. 8 - 9
< 3 >	ルート定規を作ろう	(平方根)	pp.10-11
< 4 >	標語を作ろう	(不等式の意味・性質)	pp.12-14
< 5 >	解き方フローチャート	(2 次方程式の解法の理解)	pp.15-16

< 1 > 速算いろは

- (1)科目名と単元名 数学 「方程式と不等式」<整式><実数>
- (2)学習内容
 - ア 因数分解の活用
 - イ 実数計算の工夫
- (3)教材の目的

因数分解の有用性の感得 計算力の強化

(4)指導時期案

因数分解 指導直後 授業時間が余った際

- (5)指導上の留意点
 - 一度に教え過ぎないこと

【授業プリント例】

インド式に負けない 速算いろは

足し算

組み合わせの工夫(10の束をつくる)

(例) 3+8+6+2+9+7+4

同じ数の利用

(何) 5 + 9 + 4 + 5 + 4 + 9 + 5 + 4

基準からの差の利用

(例) 78+83+81+77+85+76+77+84

数列の和の利用

(例) 2 + 8 + 1 4 + 2 0 + 2 6 + 3 2

3 + 6 + 1 2 + 2 4 + 4 8 + 9 6

筆算の工夫

(例) 9867

+8586

5 9 7 6

+6759

引き算

補数の利用

(例) 824-187-298-92 1000-99-89-192

繰り下がりを避ける(筆算)

(例) 652

8 2 4 3

- 3 7 8

- 3659

2 桁の掛け算

< 因数分解の利用 >

 $(a+b)^2$

(例) 3 1²

5 2²

(x+a)(x+b)

(例) 12×15

21×61

96×107

(x+a)(x-a)

(例) 32×28

 98×102

 $(x+a)^3$

(例) 13³

2 1³

 $(a+b+c)^2$

(例) 1 1 2²

2 1 3²

(例) 12×21+12×9

 $6 \times 17 + 6 \times 43$

分解する

(例) $35 \times 8 = 35 \times 2 \times 4$

35 x 16 =

11から19までの2数をかける

(例) 12

1 3

× 15

概数の利用

(例) 23×19

 16×59

10の位が同じで,1の位の和が10の場合

(例) 36

7 1

<u>×</u> 3 4

× 7 9

1 2 2 4

3 × (3+1) 6 × 4

1の位が同じで10の位の和が10の場合

(例) 63

2 6

× 4 3 <u>2709</u>

× 8 6

6 × 4+3 3 × 3

5の倍数を掛ける

(例) 1 2 3 4 × 5

 3578×5

× 10 ÷ 2

 7656×25

8 4 2 4 × 2 5

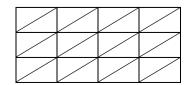
× 100 ÷ 4

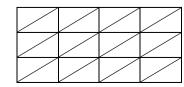
 536×125

488×125

× 1000 ÷ 8

 12×35


 16×15


× 70 ÷ 2

マス目掛け算

(例) 1234×567

 3456×789

割り算

5の倍数で割る

(例)
$$450 \div 25 = 450 \div 100 \times 4$$

1680÷35

1桁の積に分解できる数で割る

(例) 5 1 4 4 4 ÷ 1 2

割り切れるかどうかの判断

- ・2の倍数 ・8の倍数
- ・3の倍数・9の倍数
- ・4の倍数 ・10の倍数
- ・5の倍数・11の倍数94754
- ・6 の倍数
- ・7の倍数 ・16の倍数

検算

- ・1の位に注目する
- (例) 12×34×28×23=262753
- ・概数で考える
- (例) 23×21=393
 - $120 \times 13 = 156$
- ・九去法(9で割ったときのあまりで確認)

< 各ケタの数の和で確かめる。(1ケタになるまで行う)(9 = 0) >

3623

6986

1 2 1 8

- 3 7 9 7

+ 1 8 9 7

+ 5 8 1 6

6738

9005

- 6986
- _ 3 7 9 7
 - 3 1 8 9
 - 3 7 4 6

9 5 4 7

× 286

×6849

1071356

65397403

練習問題

- 問(1) 33×37
 - (2) 4 2 × 6 2
 - (3) 1 4 × 1 7
 - (4) 23 × 99
 - (5) 9 3 x 1 0 7
 - $(6) 12^3$
 - (7) 2 + 5 + 3 + 7 + 8 + 4
 - (8) 6 1 2 9 7 9 2
 - $(9) 16^{2}$
 - (10) 2 4 × 2 5
 - (11) 3 2 4 0 0 ÷ 1 2
 - (12) 2 1 x 3 1
 - (13) 7 4 6 5 + 2 8 9 7
 - (14) 5 1 3 2 3 9 4 8
 - (15) 2 7 × 2 3
 - (16) 1 2 x 1 9
 - (17) 1 1 3²
 - (18) 1 2 x 2 9
 - (19) 3 5 4 1 **x** 9 1 3 7
 - (20) 5 3 + 5 1 + 4 8 + 5 6
 - (21) 1 + 5 + 9 + 1 3 + 1 7 + 2 1
 - (22) 1 + 2 + 4 + 8 + 1 6 + 3 2 + 6 4
 - (23) 5 6 2
 - (24) 3 1 × 3 3

- (25) 6 3 × 6 7
- (26) 45 × 43
- (27) 8 × 7 × 5 × 1 5
- (28) 9 + 9 9 + 9 9 9 + 9 9 9
- (29) 5 6 x 2 5
- (30) 3 8 x 7 2 + 7 2 x 6 2
- (31) 1 9 × 4 5
- (32) 2 1 x 2 9
- (33) 2 9 x 3 1
- (34) 1 6 × 1 2 5
- (35) 1 6 x 1 8
- $(36) 2 3^2$
- (37) 13 x 19
- (38) 6 1 x 4 1
- (39) 3 2 x 2 2
- (40) 2 1 x 2 9
- (41) 3の倍数を選べ 1236・3456
- (42) 4の倍数を選べ 4924・7708
- (43) 6の倍数を選べ 1357・2346
- (44) 8の倍数を選べ 9040・9992
- (45) 9の倍数を選べ 1251・9128
- (46) 11の倍数を選べ 1291・8241

|・間違っている計算があれば訂正しなさい。|

- (47) 1 2 × 3 4 × 3 × 8 1 = 9 9 1 4 3
- (48) 2 9 7 x 2 1 = 5 2 3 7
- (49) 5 1 4 2 \times 2 3 1 4 = 1 1 8 9 8 5 8 8
- (50) 2 3 4 x 1 2 3 = 2 8 8 8

< 2 > 数を分類しよう

(1)科目名と単元名

数学 「方程式と不等式」 < 実数 > (整式)

(2)学習内容

ア 有理数・無理数(単項式・多項式)

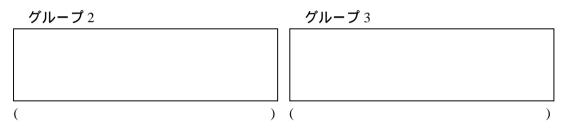
(3)教材の目的

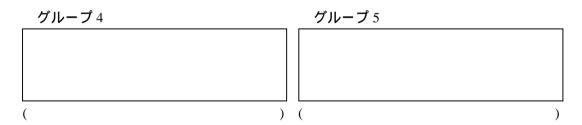
オープンエンドな発問による,多くの生徒を対象とした動機付け 多面的な見方に触れさせること 出された意見の正当性に関する議論活動

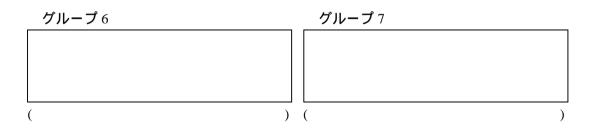
(4)指導時期案

実数 (整式)導入時

(5)指導上の留意点


新出事項とその特徴が多数の意見に埋没しないようにすること


【授業プリント例】


問.次の数字群の中から同じ特徴を持ったものを選び出し、グルーピングしなさい。なお、グルーピングした際に注目した特徴を下の()内に記入しなさい。

数字群: $\frac{5}{2}$, $-\sqrt{2}$, -9, 0.12, $\sqrt{6}$, $\frac{1}{3}$, -1.37537537..., 0, 5, $\sqrt{3}$, $-\frac{1}{4}$, 3.25, $\frac{1}{7}$, 7, 0.6666..., 1, -2.5,

例		グループ 1	
()	()

文字群の場合

文字群 $2x^2$, $7ab+3b^3$, 5, 3pq, $-2y^3$, 12, 7xyz, $5a^2b$ $-3xy+2y^3$, $4z^3$, $-8x^2$, xy^2+4xy , x, 12pq, $3x^2$, -9, 10p, $3y^3$, $-x+4p^2q^2$, 6z, xy^3 , $7x^4$

< 3 > ルート定規を作ろう

(1)科目名と単元名 数学 「方程式と不等式」<実数>

(2)学習内容 ア 平方根

(3)教材の目的

平方根に対する認識の深化 (「循環しない無限小数」も実世界に長さが存在すること) (長さのイメージ,大小関係等の認識)

(4)指導時期案 平方根導入時

(5)指導上の留意点

作図方法が生徒から出てこない場合の誘導法の準備

【授業展開例】

 $\sqrt{2} = ($

- 1 循環しない無限小数であることの確認
- 2 この長さはこの世に存在するか、問いかける (予想活動。「循環しない無限小数」という不明確な値が本当に存在するのかに焦点をあてる)
- 3 存在することの確認
- 4 今日は $\sqrt{2}$ という長さを目に見えるようにすることを目標にすることの確認
- 5 作図方法を考えるよう、問いかける
- 6 1辺の長さが1の正方形の対角線の長さとなることの確認
- 7 $\sqrt{3}$, $\sqrt{5}$ の作図方法を考えるよう、問いかける
- 8 これらをまとめると,次のように,ルートの長さを含んだ定規ができることを確認 (厚紙で実際に作成させてもよい)

 $(\sqrt{4}\text{ が 2 であることや },\sqrt{2}\text{ と}\sqrt{3}\text{ が 1 と 2 の間の数であることなども図を通して認識させることができる)$

< 4 > 標語を作ろう

(1)科目名と単元名数学 「方程式と不等式」<不等式>

(2)学習内容 ア 不等式の意味・性質

(3)教材の目的

不等式の意味の認識の深化 数学的な表現のよさの感得

(4)指導時期案 不等式導入時

(5)指導上の留意点

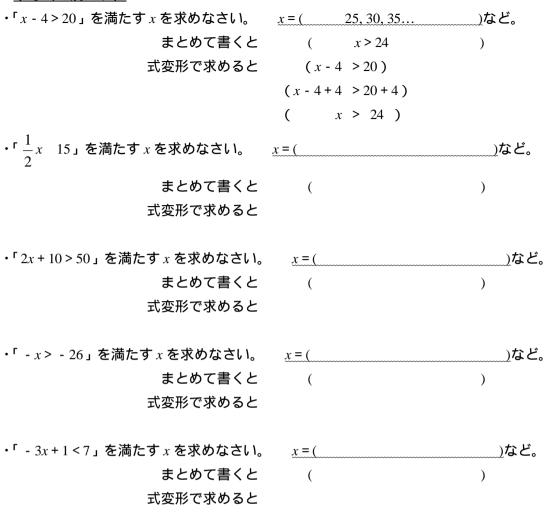
不等号の性質上,離散量よりも連続量を取り上げたほうがよい

<u>不等式</u>

•	年齢	•	身長等の制限があるもの)
---	----	---	-------------	---

(例) (飲酒,喫煙,結婚,選挙権,ジェットコースター … 等)	
「(ジェットコースター)」に注目!	
(身長が 120 cm) にならないと(ジェットコースターには乗れない) , という意味の <u>標語</u> をつくろう!	
・「(身長が 120cm 未満の方は , このジェットコースターには乗れません) 」	
・「(このジェットコースターに乗れるのは , 身長が 120cm 以上の方だけです。)」	
• r	
• r	
•г	
「(x以下)」「(x以上)」	
(<u>x を含んで</u> x より小さい , <u>x を含んで</u> x より大きい)	
「(x 未満)」「(x より小さい)」「(x より大きい)」	
$(\underline{x}$ を含まずに \underline{x} より小さい , \underline{x} を含まずに \underline{x} より大きい)	
・以上より,ジェットコースターに乗れる人の身長を x とすると, x のとりうる値には	
(120, 125, 163,) などがある。これらxのとりうる値をすべてまとめて,	
(x 120)という表現で表すことができる。	
(x は 120 以上のすべての数) $ (<,>, ,$ などの記号を不等号という $)$	
問 1. ジェットコースターに乗れない人の身長を y cm とすると y のとりうる値の範囲を不等号を用いて表	L
なさい。	0
答(0 <y<120)<="" td=""><td></td></y<120>	
問 2. 1 の位を四捨五入して 50 になる数字 z を , 不等号を用いて表しなさい。	
答(45 z<55)	

以上のことより,x > a(aは定数)(または,x < a(aは定数))という表現によって,


a より大きい (a より小さい) 全ての数をまとめて表すことができる。

また,x a(aは定数)(または,x a(aは定数))という表現によって,

a以上 (a以下) の全ての数をまとめて表すことができる。

これら,不等号の含まれた式を(不等式)と呼ぶ。

不等式を満たす値

上記のx のように,不等式を満たす限られた値を,その不等式の(解)と呼ぶ。また,この不等式の(解)を求めることを,(不等式を解く)という。

上記のように,不等式は式変形によって解くことができるが,その際に以下の不等式の性質に注意する必要がある。

『 a < b 、 b < c ならば 、a (<) c 』
不等号をまたいで移行可能である。
『 a < b ならば 、a + c (<) b + c 、a - c (<) b - c 』
(例) 「x + 2 > 5」 (「x + 2 - 2 > 5 - 2」)「x > 5 - 2」 「x > 3」
正の数をかける(正の数で割る)と、不等号の向きは変わらない。
負の数をかける(負の数で割る)と、不等号の向きが変わる。
『 a < b 、 m > 0 ならば 、 ma (<) mb 』
『 a < b 、 m < 0 ならば 、 ma (>) mb 』
(例) 「2x 6」 「2x ÷ 2 6 ÷ 2」 (「2x × 1/2 6 × 1/2」)「x 3」
「- x < -3」 「- x × (-1) < -3 × (-1)」 「x > 3」

<5> 解き方フローチャート

(1)科目名と単元名

数学 「方程式と不等式」 < 2 次方程式 >

(2)学習内容

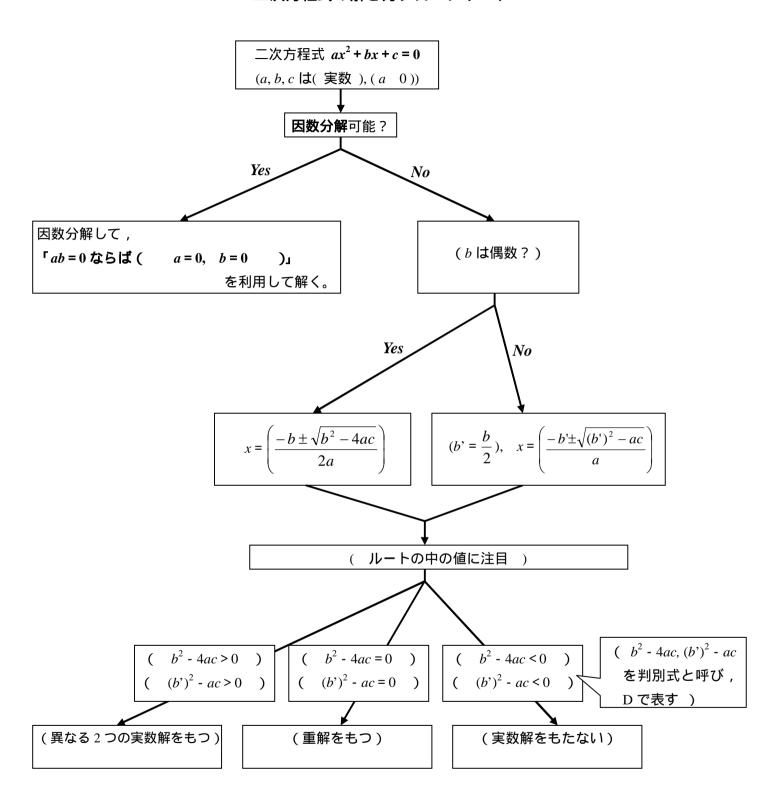
ア 2次方程式の解法の理解

イ 判別式の理解

(3)教材の目的

2次方程式の解法の構造的理解

2次方程式の解の公式と判別式の統合的理解


(4)指導時期案

2次方程式の解法と平行して指導 単元終了後のまとめ

(5)指導上の留意点

解法に習熟しないうちに一般化しすぎないこと

二次方程式の解き方フローチャート

