入れ替えずに書いてみた。 $(a+b)^4 = (a+b)(a+b)(a+b)(a+b)$ $(a+b)^2 = a^2 + 2ab + b^2$ $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

aは、①の中のaまたはb βは、②の中のaまたはb rは、③の中のaまたはb bは、④の中のaまたはb なは、④の中のaまたはbだから、 affo社全部で、2.2.2.2=16個ある。

各項は、aproの形をしている。

(a+b)4 を展開すると,

=(aa+ab+ba+bb)(a+b)(a+b)

= (aaa + aab + aba + abb + baa + bab + bba + bbb)(a + b)

= aaaa + aaab + aaba + aabb + abaa + abab + abba + abbb + baaa + baab+baba+babb+bbaa+bbab+bbba+bbbb

1列に並べる並べ *C4踊₽ ör 1踊り 6を4個 | aを3個, bを1個 | aを2個, bを2個 | aを1個, bを3個 | 1列に並べる並べ方 | 1列に並べる並べ方 | 1列に並べる並べ方 | 1列に並べる並べ方 | 1列に並べる並べ方 | 1列に並べる並べ方 | 1列に並べるがべ方 | 1列に並べるがで方 | 1列に並べるがで方 | 1列に並べるがで方 | 1列に並べるがで方 | 1列に並べるがで方 | 1列に対して対しませた | 1列に対して対しませた | 1列に対しませた | 1列にませた | 4! 2!2! 通り ab^3+ た。通り ö $a^2b^2 +$ 4! 2!2! ^通0 C_2 通0ö $a^3b +$ 4! 3! 通り ℃j通り or a^4 並べる並べ方 ¢C₀通り 1通り ö

 $(a+b)^5 = (a+b)(a+b)(a+b)(a+b)(a+b)$

= (aaaa + aaab + aaba + aabb + abaa + abab + abba + abbb + baaa + baab+baba+babb+bbaa+bbab+bbba+bbbb)(a+b)

+baaaa+baaab+baaba+baabb+babaa+babab+babba+babbb+ abaaa + abaab + ababa + ababb + abbaa + abbab + abbba + abbbb+bbaaa+bbaab+bbaba+bbabb+bbbaa+bbbab+bbbba+bbbbb= aaaaa + aaaab + aaaba + aaabb + aabaa + aabab + aabbb, 6を4個人 ab^4+ bを3個 aを1個, a^2b^3+ aを4個, bを1個 aを3個, bを2個 aを2個. $a^3b^2 +$ a^4b+

並べる並べ方 で通り 1通り or 1列に並べる並べ 5! 通り 5C₄通り or 1列に拡べる拡入 5! 通り or Scai 1 列に並べる並べ 5! 3!2! ^{通り} 5C2通り or 5! 通り 4! 通り SC_1 濁Dor aを5個1列口 同様に考える 並べる並べ方 る。通り 1通り or

 $(a+b)^6 = a^6 + \frac{6!}{5!} a^5 b + \frac{6!}{4!2!} a^4 b^2 + \frac{6!}{3!3!} a^3 b^3 + \frac{6!}{2!4!} a^2 b^4 + \frac{6!}{5!} a b^5 + b^6$ $=a^6 + _6C_1a^5b + _6C_2a^4b^2 + _6C_3a^3b^3 + _6C_4a^2b^4 + _6C_5ab^5 + b^6$ $= a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6$

(a+b)"の展開式の一般項は,

$$\frac{n!}{p!q!}a^pb^q \quad (\ \text{\not\sc tc} \ \text{\not\c}, \ \ p+q=n \)$$

p個のa,q個のbの合計n個を1列に並べる順列である。 n! p!q! tt,

$$(a+b)^{n} = \frac{n!}{n!0!} a^{n} + \frac{n!}{(n-1)!1!} a^{n-1}b + \frac{n!}{(n-2)!2!} a^{n-2}b^{2} + \dots + \frac{n!}{(n-q)!q!} a^{n-q}b^{q} + \dots + \frac{n!}{1!(n-1)!} ab^{n-1} + \frac{n!}{0!n!} b^{n}$$

また、次が成り立つ。

(a+b)"の展開式の一般項は、

$$_{n}C_{q}a^{p}b^{q}$$
 ($ttlue_{c}$, $p+q=n$)

 ${}_nC_q$ は,p個(n-q個)のa,q個のbの合計n個を1列に並べる順列である。 $(a+b)^n = {}_nC_0a^n + {}_nC_1a^{n-1}b + {}_nC_2a^{n-2}b^2 + \cdots + {}_nC_ra^{n-r}b^r + \cdots + {}_nC_{n-1}ab^{n-1} + {}_nC_nb^n$ $=\sum_{q=0}^n {C_q a^{n-q} b^q}$

 $(3x-2y)^5$ の展開式における x^2y^3 の係数を求めなさい。 例題

ただし, ケ+4=5 一般項は, $\frac{5!}{p!q!}(3x)^p(-2y)^q = \frac{5!}{p!q!}3^p(-2)^qx^py^q$ 解答

そのときの係数は、 であり、 x^2y^3 の頃は、p=2、q=3のときだから、

 $\frac{5!}{2!3!}3^{2}(-2)^{3} = \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1} \times 9 \times (-8) = -\frac{5}{2}$

一般項は、 ${}_5C_4(3x)^{5-q}(-2y)^q = {}_5C_q3^{5-q}(-2)^qx^{5-q}y^q$ 別解

であり, $x^2 y^3$ の項は,q=3のときだから,そのときの係数は, ${}_{5}C_{3}3^{4}(-2)^{3} = \frac{5 \times 4 \times 3}{3 \times 2 \times 1} \times 9 \times (-8) = -720$

次の各問いに答えよ。 演習

 $(1)(2x+y)^5$ の展開式における x^3y^2 の係数を求めなさい。

 $(2)(x-7y)^7$ の展開式における x^3y^4 の係数を求めなさい。

次の式を展開しなさい。 問題

 $(a+b+c)^2 = a^2 + b^2 + c^2 + 2bb + 2bc \oplus 2ca$

公式です。

=aaa+aab+aac+aba+abb+abc+aca+acb+acc= (aa+ab+ac+ba+bb+bc+ca+cb+cc)(a+b+c) $(a+b+c)^3 = (a+b+c)(a+b+c)(a+b+c)$

+baa+bab+bac+bba+bbb+bbc+bca+bcb+bcc+caa+cab+cac+cba+cbb+cbc+cca+ccb+ccc

p:q:r:	abc		(aを1個,	6を1個	<i>c</i> を1個	列[[]	並べる	並べ方	31通り			
p:d	c^2b	~	6を1個,	cを2個	一列に	はべる	並べ方		31 21 通り			
) \ \ \ \ \	$+$ c^2a+		aを1個,	6を2個	—列に	様べる	並べ方		31 通り			
. cad + cad -	$+ b^2c +$		6を2個,	6を1個	列に	様べる	並べ方		31 通り	,		
12 + 102 +	$+ b^2a +$	_	αを1個,	5を2個	—列に	旅べる	並べ方		3! 選0			
001 + no	a^2c+	سه	aを2個,	cを1個	一列に	はべる	並べ方	-	3! 強の			
ト・ル・ト	$a^2b +$	/	aを3個6を3個cを3個 aを2個,	6を1個	—列(C	様べる	並べ方		31 通り		-	
1000	c^3+	/	6を3個	一列に		並べ方			1通り			
223	+ 93+	~	6を3個	一列に 一列に	掛くる一様くも	並べ方			1通り			٠
	$= a^3 + b^3 + c^3 +$	4	aを3個	列に	掛べる	掛べ方			1通り			

(a_{-})	$(a+b+c)^4$	4			•	\int	—————————————————————————————————————	一般項は, 4! a bb ac
11	4+	$= a^4 + b^4 + c^4 + a^3 b + a^3 c + b^3 a + b^3 c + c^3 a + c^3 b$	$a^3b +$	$a^3c +$	$b^3a +$	b^3c+	$c^3a +$	$c_3 p$
	+	$+ a^2b^2 + a^2c^2 + b^2c^2 + a^2bc + b^2ac + c^2ab$	a^2c^2+	b^2c^2+	a^2bc+	b^2ac+	c^2ab	
Ш	a4+	$= a^4 + b^4 + c^4 + a^3b + a^3c + b^3a + b^3c + c^3a + c^3b$	a^3b +	a^3c+	b^3a+	p^3c+	$c^3a +$	$q_{arepsilon}^{2}$
	+	$+ a^2b^2 + a^2c^2 + b^2c^2 + a^2bc + b^2ac + c^2ab$	a^2c^2+	b^2c^2+	a^2bc+	b^2ac+	c^2ab	

(a+b+c)"の展開式の**一般項**は,

$$rac{n!}{p!q!r!}a^pb^qc^r$$
(ただし, $p+q+r=n$) $rac{n!}{p!q!r!}$ は, p 個の a , q 個の b , r 個の c の合計 n 個を 1 列に並べる順列である。

 $(a+b+c)^7$ の展開式における $a^2b^3c^2$ の係数を求めなさい。 例題

ただし, p+q+r=7 解答 一般頃は, $\frac{7!}{p!q!r!}a^pb^qc^r$ (a+b+c)³ を展開すると、 各項は、 agr の形をしている。 a は、 ①の中の a または b または c β は、 ②の中の a または b または c 7 は、 ③の中の a または b または c agr は全部で、3・3・3=27 個ある。

であり、 $a^2b^3c^2$ の項は、p=2、q=3、r=2のときのだから、そのときの係数は、

 $\frac{7!}{2!3!2!} = \frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1 \times 2 \times 1}$

=210

演習 次の各間いに答えなさい。

 $(1)(x+2y+3z)^4$ の展開式における xyz^2 の係数を求めなさい。

(2) $(2x+3y-4z)^6$ の展開式における x^3y^2z の係数を求めなさい。